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Abstract— In a large network of computers or wireless sensors, fact that the data is static or rapidly changing. In the farme
each of the components (henceforth, peers) has some data abo case the periodic approach wastes resources, while onttée la
the global state of the system. Much of the system's functi@iity i might be inaccurate. The benefit of the incremental apghroa
such as message routing, information retrieval and load shing . . . .
relies on modeling the global state. We refer to the outcomefohe IS th"f‘t 'FS accuracy can -be optlmgl. Unfortunately, coming
function (e_g_’ the load experienced by each peer) as thmodel of up W|th |ncremental a|gorltth Wh|Ch are bOth accurate a.nd
the system. Since the state of the system is constantly chamg, efficient can be hard and problem specific. On the other hand,
it is necessary to keep the models up-to-date. model accuracy is usually judged according to a small number

Computing global data mining modelse.g. decision trees,k- ot rather simple metrics (misclassification error, leasiasg

means clustering in large distributed systems may be very stly NN -
due to the scale of the system and due to communication Cost,error, etc.). If monitoring is done efficiently and acculate

which may be high. The cost further increases in a dynamic then the reactive approach can be applied to many different
scenario when the data changes rapidly. In this paper we degbe data mining algorithm at low costs.
a two step approach for dealing with these costs. First, we | ocal algorithms are one of the most efficient family of
describe a highly efficient local algorithm which can be used — 4)q0rithms developed for distributed systems. Local afgors
to monitor a wide class of data mining models. Then, we . . . . . .
use this algorithm as a feedback loop for the monitoring of are in-network algorllthms. in which data is never centralize
complex functions of the data such as ité-means clustering. The but rather computation is performed by the peers of the
theoretical claims are corroborated with a thorough expermental network. At the heart of a local algorithm there is a data
analysis. dependent criteria dictating when nodes can avoid sending
updates to their neighbors. An algorithm is generally chlle
local if this criteria is independent with respect to the foem
of nodes in the network. Therefore, in a local algorithm, it

N sensor networks, peer-to-peer systems, grid systems, aftgén happens that the overhead is independent of the size of

other large distributed systems there is often the needtl® system. Primarily for this reason, local algorithmsilkith
model the data that is distributed over the entire system. high scalability. The dependence on the criteria for avajdi
most cases, centralizing all or some of the data is a costty send messages also makes local algorithms inherently
approach. When data is streaming and system changesiaceemental. Specifically, if the data changes in a way that
frequent, designers face a dilemma: should they update th@es not violate the criteria, then the algorithm adjustthe
model frequently and risk wasting resources on insignificachange without sending any message.
changes, or update it infrequently and risk model inacgurac Local algorithms were developed, in recent years, for alarg
and the resulting system degradation. selection of data modeling problems. These include assotia

At least three algorithmic approaches can be followed mile mining [1], facility location [2], outlier detection3],
order to address this dilemma: Tiperiodic approach is to L2 norm monitoring [4], classification [5], and multivaréat
rebuild the model from time to time. Thecrementabpproach regression [6]. In all these cases, resource consumptien wa
is to update the model with every change of the data. Lashown to converge to a constant when the number of nodes
the reactive approach, what we describe here, is to monitdés increased. Still, the main problem with local algorithms
the change and rebuild the model only when it no longéhnus far, has been the need to develop one for every specific
suits the data. The benefit of the periodic approach is jsoblem.
simplicity and its fixed costs in terms of communication and In this work we make the following progress. First, we
computation. However, the costs are fixed independent of theneralize a common theorem underlying the local algosthm

in [1], [2], [4], [5], [6] extending it fromR to R?. Next, we

A preliminary version of this work was published in the Prediags of describe a generic algorithm, relying on the said genesdliz
the 2006 SIAM Data Mining Conference (SDM’'06). . . .
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k clustering which is a good approximation of themeans  Definition 2.4: Theglobal inputis the set of all input§; =

clustering of data distributed over a large distributedteys U Xi i

Our theoretical and algorithmic results are accompanig wi,,cv

a thorough experimental validation, which demonstrate bo We are interested in inducing functions definedcrsince

the low cost and the excellent accuracy of our method. G is not available at any peer, we derive conditionskgnA
The rest of this paper is organized as follows. The ne&nd )V which will allow us to learn the function og. Our

section describes our notations, assumptions, and theaformext set of definitions deal with convex regions which are a

problem definition. In Section Il we describe and prove theentral point of our main theorem to be discussed in the next

main theorem of this paper. Following, Section IV describegection.

the generic algorithm and its specification for the L2 thresh AregionR C R¢ is convex, if for every two points,y € R

olding problem. Section V presents the reactive algoritfons and everyx € [0, 1], the weighted average-z+ (1 — «)-y €

monitoring three typical data mining problemsviz. means R. Let F be a function fromR? to an arbitrary domain

monitoring andk-means monitoring. Experimental evaluatiof). F is constant onR if Vz,y € R : F(z) = F(y).

is presented in Section VI while Section VIl describes eddat Any set or regions{R;, R»,...} induces a cover ofR?,

work. Finally, Section VIII concludes the paper and listsngo R = {R;, Ro, ..., T} in which thetie regionT includes any
prospective future work. point of R? which is not included by one of the other regions.
We denote a given covR » respectiveof F if for all regions
Il. NOTATIONS, ASSUMPTIONS AND PROBLEM except the tie regiorf is constant. Finally, for any: € R?
DEFINITION we denoteR + (z) the first region ofR # which includesz.

In this section we discuss the notations and assumptions
which will be used throughout the rest of the paper. The main _
idea of the algorithm is to have peers accumulate sets of infi Assumptions
vectors (or summaries th.e.reof) from their neighbors. Wesho Throughout this paper, we make the following assumptions:
that under certain conditions on the accumulated vectors a ; S )

; . . -Assumption 2.1:Communication is reliable.

peer can stop sending vectors to its neighbors long before |f: tion 2.2C ication tak |
collects all input vectors. Under these conditions one af tw . ssumption 't.' otmmunlca 10N takes place over a span-
things happens: Either all peers can compute the result froRY comm_unlca lon tree. . ) )
the input vectors they have already accumulated or at leasf\SSumption 2.3Peers are notified on changes in their own
one peer will continue to update its neighbors — and througdfte:, and in the set of their neighbors;.
them the entire network — until all peers compute the correctASSUMption 2.4input vectors are unique.

result. Assumption 2.5A respective covefRx can be precom-
puted forF.
A. Notations Note that assumption 2.1 can easily be enforced in all ar-
Let V = {pi,...,pn} be a set of peers (we use the ternghitectures as the algorithm poses no requirement for orgler

peers to describe the peers of a peer-to-peer system, mcotegr&imeliness of messages. Simple approaches, such as-piggy

a wireless sensor network, etc.) connected to one another RACKing message acknowledgement can thus be implemented

an underlying communication infrastructure. The set ofrped” €V€N the ml?St demand|_ng szcgnanosb— thc};cse 0; W|r.eless
with which p; can directly communicatey;, is known top;. S€"SO networks. Assumption 2.3 can be enforced using a

Assuming connectednesd] always containg; and at least heartbeat mechanism. Assumption 2.2 is the strongest of the

one more peer. Additionally, is given a time varying set of three_. Although solutions that enforce it exist (see _formemba
input vectors inR<. [7]), it seems a better solution would be to remove it altbget

Peers communicate with one another by sending sets 4519 @ method as described by Lies al. [8]. However,

input vectors (below, we show that for our purposes staﬁstidescribing _such a method in _this generic setting is beyoead t.h
on sets are sufficient). We denote B ; the latest set of SCOPe of this paper. Assumption 2.4 can _be enforced t_)y addmg
vectors sent by peep; to p;. For ease of notation, we the place and time of origin to each point and then ignoring

denote the input of; (mentioned above.,. Thus, U X, it in the calculation of7. Assumption 2.5 does not hold for
p; EN;

any function. However, it does hold for many interestingsne
becomes the latest set of input vectors knowmpto The algorithm described here can be sensitive to an ingfficie

Assuming reliable messaging, once a message is delivefé@ice of respective cover.
both p; and p; know both X, ; and X; ;. We further define ~ Note that, the correctness of the algorithm cannot be guar-

four sets of vectors that are central to our algorithm. anteed in case the assumptions above do not hold. Spegificall
Definition 2.1: The knowledgeof p;, is K; = U X duplicate counting of input vectors can occur if Assumption
p,EN: 2.2 does not hold — leading to any kind of result. If messages

Definition 2.2: Theagreemenbf p;, and any neighbop; € are lost then not even consensus can be guaranteed. The only
Niis A;j = X5 U X, positive result which can be proved quite easily is that if at

Definition 2.3: The withheld knowledg®f p; with respect any time the communication infrastructure becomes a fprest
to a neighbop; is the subtraction of the agreement from thany tree will converge to the value of the function on the inpu
knowledgeW, ; = K; \ A ;. of the peers belonging to that tree.



C. Sufficient statistics may perform as badly a® |V|2 in case the vote is tied.

The a|gorithm we describe in this paper deals with Conﬁ\levertheless when the vote is Significant and the distobuti
puting functions of linear combinations of vectorsgn For Of votes is random the algorithm will only consume constant
clarity, we will focus on one such combination — the averaggesources, regardless gf|. Alternative definitions exist for
Linear combinations, and the average among them, can l8eal algorithms and are thoroughly discussed in [9] and.[10
computed from statistics. If each peer learns any inputorect
(other than its own) through just one of its neighbors, then 1. M AIN THEOREMS
for the purpose of computing;, A; ;, andW, ;, the various
X, ; can be replaced with their averag¥; ;, and their size,
|X; ;1. To make sure that happens, all that is required fro
the algorithm is that the content of every message sent; by
to its neighborp; would not be dependent on messages
previously sent tg;. In this way, we can rewrite:

The main theorem of this paper lay the background for
local algorithm which guarantees eventual correctness in
the computation of a wide range of ordinal functions. The
theorem generalizes the local stopping rule described ]in [1
by describing a condition which bounds the whereabouts of
the global average vector iR? depending on thé&; A; ; and
o Kl = Z RN W; ; of each peep;.
. 1A :”jlgévf 141X Theorem 3.1:[Main Theorem] Let G(V, E') be a spanning
|V\;7J'| _ |ICZ-"|7— A, -7]|1 tree in whichV is a set of peers and Ie¥; ; be the input of
J ' 7 p;, KC; be its knowledge, andl; ; and W, ; be its agreement

o K= Z ||Ing|Xj,i and withheld knowledge with respect to a neighpere N;
piEN; as defined in the previous section. LRtC R? be any convex
o« A= %Xm + I‘jJ]‘IX” region. If at a given time no messages traverse the network

and for allp; andp; € N; K;, A; ; € R and either; ; = 0
or W;; € R as well, theng € R.

o Proof: Consider a communication grap8(V, E) in
D. Problem Definition which for some convexX? and everyp; andp; such that, €

We now formally define the kind of computation providedV; it holds thatC;, A; ; € R and eithedV; ; = 0 orW; ; € R
by our generic algorithm and our notion of correct and afs well. Assume an arbitrary leaf is eliminated and all of
accurate computation. the vectors inYV; ; are added to its sole neighbpr. The

Problem definitionGiven a functionZ, a spanning network new knowledge op; is K'; = KC; UW; ;. Since by definition
treeG(V, E) which might change with time, and a set of timeéC; N W, ; = 0, the average vector of the new knowledge of
varying input vectorsX; ; at everyp; € V, the problem is to p;, K';, can be rewritten ak; UW, ; = a-K; +(1—a)- W, ;
compute the value of over the average of the input vectordor some« € [0,1]. Since R is convex, it follows from
[ K;, Wi ; € RthatK'; € R too.

While the problem definition is limited to averages of data Now, consider the change in the withheld knowledge of
it can be extended to weighted averages by simulation. Ifpa with respect to any other neighbpg € N; resulting from
certain input vector needs to be given an integer weight sending such a message. The n&y; , = W, ;UW,; ;. Again,
thenw peers can be simulated inside the peer that has tsatceWV; ; N W, = 0 and sinceR is convex it follows from
vector and each be given that input vector. Likewise, if it i8V; ;, W, € R thatW’,, € R as well. Finally, notice the
desired that the average be taken only over those inputhwhigreements agf; with any neighbop;, exceptp; do not change
comply with some selection criteria then each peer can apply a result of such message.
that criteria toX; ; apriori and then start off with the filtered Hence, following elimination op; we have a communica-
data. Thus, the definition is quite conclusive. tion tree with one less peer in which the same conditionk stil

Because the problem is defined for data which may changeply to every remaining peer and its neighbors. Proceeding
with time, a proper definition of algorithmic correctnessanuwith elimination we can reach a tree with just one pger
also be provided. We define ttaecuracyof an algorithm as still assured thak’; € R. Moreover, since no input vector was
the number of peers which compute the correct result at alogt at any step of the eliminatioi; = G. Thus, we have that
given time, and denote an algorithm exbust if it presents under the said condition§ € R. ]
constant accuracy when faced with stationarily changirig.da Theorem 3.1 is exemplified in Figure 1. Three peers are
We denote an algorithm asventually correctif, once the shown, each with a drawing of its knowledge, it agreement
data stops changing, and regardless of previous changes,with its neighbor or neighbors, and the withheld knowledge.
algorithm is guaranteed to converge to a hundred percéddtice the agreemend; » drawn forp, is identical toAs ; at
accuracy. p2. For graphical simplicity we assume all of the vectors have

Finally, the focus of this paper is docal algorithms. As the same weight — and avoid expressing it. We also depict
defined in [1], a local algorithm is one whose performandbe withheld knowledge vectors twice — once as a subtraction
is not inherently dependent on the system size, in which of the agreement from the knowledge — using a dotted line —
|V| is not a factor in any lower bound on performance. Noticend once — shifted to the root — as measured in practice. If
locality of an algorithm can be conditioned on the data. Fdéne position of the three peers’ data is considered vissaha
instance, in [1] a majority voting algorithm is describedigéh circular region then the conditions of Theorem 3.1 hold.




Now, assume what would happen when pgeris elimi- overlapping region, peers reach consensus on the choice of
nated. This would mean that all of the knowledge it withhold®gion and, hence, on the output.
from p, is added toXl, and to W, 3. Since we assumed These two issues become more complex for a gengral
Wi 2| = |[K2| = 1 the result is simply the averaging of theover R?. First, for many interesting”, the regions in which
previousK, and W, ». Notice both these vectors remain irthe function is constant are not all convex. Also, there @oul
the circular region. be many more than two such regions, and the selection of the
Lastly, asp, is eliminated as welllV, 5 — which now also region in which the stopping rule needs be evaluated becomes
includesV, » —is blended into the knowledge pf. Thus,KC3  non-trivial.
becomes equal tg. However, the same argument, as applied We therefore provide two lemmas which provide a way to
in the elimination ofp;, assures the neW; is in the circular deal with the selection problem and an answer to the case
region as well. where in which a function cannot be neatly described as a
partitioning of R? to convex regions in which it is constant.
Lemma 3.2:[Consensus]Let G(V, E) be a spanning tree
in which V' is a set of peers and let;; be the input ofp;,
K; be its knowledge, andl; ; andV; ; be its agreement and
withheld knowledge with respect to a neighbor € N; as
defined in the previous section. L&z = {R;, Ra,...,T}
be aF-respective cover, and I&® ~ (x) be the first region in
R# which containse. If for every peerp; and everyp; € N;
"Rr (K;) = Rr (A;;) then for every two peers; and py,
Rz (Ki) = R (K2)-
Proof: We prove this by contradiction. Assume that
the result is not true. Then there are two pegfsand
pe wWith Rz (K;) # Rz (K;). Since the communication
graph is a spanning tree, there is a path fropto p, and
somewhere along that path there are two neighbor peers,
andp, such thatR# (K,)) # R (K,). Notice, however, that
Auo = Ay . Therefore, eitheRx (K,) # Rr (Au,) oF
Rz (Ky) # R (Ayu) — a contradiction. ]
Building on Lemma 3.2 above, a variant of Theorem 3.1 can
be proved which makes use of a respective cover to compute
the value ofF.
Theorem 3.3:Let G(V, E) be a spanning tree in whici
is a set of peers and leX;; be the input ofp;, K; be its
knowledge, and4; ; andW; ; be its agreement and withheld
Fig. 1. At Figure 1(a) the data at all three peers concur vithdonditons knowledge with respect to a neighbpy € N; as defined
Cuospromy e  Simelcd ma¥. somiops g, M (e previous secton LeR — (R, I, T} be 2
Z?fezfeqduzr:]él/cs aqﬁé Wha 3 do change bult’QStiII remali)r? in the 32;me region.r(:"Sp(:"CtiVe cover, and IR+ () be the first region inR»
When subsequently, in Figure 1(g)z is eliminated againC; = G which Which containsz. If for every peerp; and everyp; € N;
demonstrateg is in the circular region. Rr (E) =Rr (A—”) # T and if furthermore eithew; ; =
0 or W;; € R (K;) then for everyp;, F(K;) = F(G).
To see the relation of Theorem 3.1 to the previous the Froof: FromLemma 3.2t follows that all peers compute
)t,he sameR # (K;). Thus, since this region is ndt, it must be

Majority-Rule algorithm [1], one can restate the majorit i
voting problem as deciding whether the average of zero-of@vex. It therefore follows from Theorem 3.1 tHats, too,
in Rz (K;). Lastly, sinceR s is a respective coveF must

votes is in the segment), ) or the segment\,1]. Both X =

segments are convex, and the algorithm only stops if for ¢ constant on all regions except Thus, the value o (9)

peers the knowledge is further away fronthan the agreement S €qual to that ofF(K;), for any p;. =

— which is another way to say the knowledge, the agreement,

and the withheld data are all in the same CONVeX region.|\, A G eNERIC ALGORITHM AND I TS INSTANTIATION

Therefore, Theorem 3.1 generalizes the basic stopping rule

of Majority-Rule to any convex region iR?. This section describes a generic algorithm which relies
Two more issues arise from this comparison: one is that @am the results presented in the previous section to compute

Majority-Rule the regions used by the stopping rule coiacidhe value of a given function of the average of the input

with the regions in whichF is constant. The other is that invectors. This generic algorithm is both local and evenyuall

the Majority-Rule, every peer decides according to which abrrect. The section proceeds to exemplify how this generic

the two regions it should try to stop by choosing the regicagorithm can be used by instantiating it to compute whether

which includes the agreement. Since there are just two ndhe average vector has length above a given threshdld) =

s

(c) After elimination ofpa.




other hand, one of the aforementioned cases do occur, then

0 |z <e o .
. L2 thresholding is both an important problem

1 |lz|| > ¢ p; sends a message. This is performed by SeadMessage
in its own right and can also serve as the basis for data minifgthod. IfK; is in 7" thenp; simply sends all of the withheld
algorithms as will be described in the next section. data. Otherwise, a message is computed which will asdure

andW; ; are inRx (K;).

One last mechanism employed in the algorithm is a “leaky
bucket” mechanism. This mechanism makes certain no two

The generic algorithm, depicted in Algorithm 1, receives afessages are sent in a period shorter than a constamsiaky
input the functionF, a respective coveR+, and a constant, pycket is often used in asynchronous, event-based systems t
L, whose function is explained below. Each pgerutputs, prevent event inflation. Every time a message needs to be sent
at every given time, the value of based on its knowledge the algorithm checks how long has it been since the last one
K;. was sent. If that time is less thdn the algorithm sets a timer

The algorithm is event driven. Events could be one of thgr the reminder of the period and calliChangeagain when
following: a message from a neighbor peer, a change in the: timer expires. Note that this mechanism does not enforce
set of neighborsg(.g, due to failure or recovery), a change irany kind of synchronization on the system. It also does not

the local data, or the expiry of a timer which is always set tgfect correctness: at most it can delay convergence becaus
no more thanZ. On any such event; calls theOnChange information would propagate more slowly.
method. When the event is a messagg/.X | received from
E‘ r;eighborpﬁ-, Di Wr?l”d updateX; ; to X and |X; ;| to |X| Algorithm 1 Generic Local Algorithm

efore it callsOnChange .

T . __Input of peer p;: F, R ={Ry,R>,..., T}, L, X;;, and

The objective of theOnChangemethod is to make certain P peerp 7= R R ! ’
that the conditions of Lemma 3.3 are maintained for the pe/ggi hoc output of peer p;: F (K;)
that runs it. These conditions requik&, A; ;, andWi; (N 5o structure for iy For each;)- €N X, (X X
case it is not null) to all be iR x (K;), which is not the tie X, .|, last.messa el j i Niggy [ Al Agis
regionT. Of the threeC; cannot be manipulated by the pee'JrniEi’;\Iizatioh' lastgmessage oo
The peer thus manipulates bath ;, andWV; ; by sending a On receiving a m(_essag@_( X | from p;:
message tg;, and subsequently updating; ;. _ X, — X, X4 — |X] ’ /

In caseR.» (ICZ) # T one way 0 adjusid; ; andW; s0 Ehange m)é“ N;, K; or |K;|: call OnChange()
that the conditions of Lemma 3.3 are maintained is to se Change() '
the entire)V; ; to p;. This Wguld makeAZ—quual to/C;, and For eachp; € Ni:
therefore maket; ; equal tokC; and inR # (K;). Additionally, _ If one 0]3 the flollowing conditions oceur:
W;,; becomes empty. However, this solution is one of th_el R (F) — T and eitherd,; + K; or | A, ;| # |Ki|
many possible changes 14, ; andW; ;, and not necessarily _ ' |V\§ | Z0 and A £ K, w ! ’
the optimal one. We leave the method of finding a value for 5’ A_l_’Jg R () (;’rJW- _Zg R ()
the next messag¥; ; which should be sent by, unspecified _ th.enw F A I F A
at this stage, as it may depend on characteristics of théfispec call SendMessage,)

Rr. .
. . — . . SendMessag@:;):
The other possible case is th&tr (K;) = T'. SinceT is If time () — lga@;Z )message .

always the last region_de, Fhis meansiC; is_ outside any _ If Rr (E) = T then the newX,, and| X, | areW,;
other regionR € R . Sincel is not necessarily convex, theand Wi, respectively ’ ’ '
only thipn which will guarqntee.eventual correctness i th_ Othergvise compute neW,; and|X; ;| such that
case is If.pi sends the entire withheld knowledge to everm Ry (K) and eitheer €Ry (K) or [W,j| =0
neighbor it has. . — last_message — time 0

Lastly, we need to address the possibility that a@outhSendXi X0 to p,
Wil = 0 we will have A; ; which is different fromK;. gga Jriend !
.Th.is can happere.g, when the withheld knowledge i§ sent_ \wait 7, — (time () — last_message) time units and then
in its entirety and subsequently the local data changescuotca” OnChange()
this possibility results only from our choice to use suffittie
statistics rather than sets of vectors: Had we used sets of
vectors,V; ; would not have been empty, and would fall into
one of the two cases above. As it stands, we interpret the case
of non-emptyW; ; with zero|W; ;| as if W, ; is in T B. Eventual correctness

It should be stressed here that if the conditions of LemmaProving eventual correctness requires showing that if both
3.3 hold the peer does not need to do anything even if itse underlying communication graph and the data at eveny pee
knowledge changes. The peer can rely on the correctnessefse to change then after some length of time every peer
the general results from the previous section which aséuate twould output the correct resulf (G); and that this would
if 7 (K;) is not the correct answer then eventually one of itsappen forany static communication tre€(V, E), any static
neighbors will send it new data and chanie If, one the dataX;; at the peers, and any possible state of the peers.

A. Generic Algorithm




Proof: [Eventual Correctnes$ Regardless of the state ofto an empty withheld knowledge and must concur with the
Ki, Aij, Wi, the algorithm will continue to send messagesonditions of Lemma 3.3. However, the algorithm begins with
and accumulate more and more®fin each/C; until one of |X; ;| = LQ‘XJ' and only gradually increases the weight,
two things happens: One is that for every p&&r= G and trying to satisfy the conditions without sending all data.
thusA; ; = IC; for all p; € N;. Alternatively, for everyp; A, ;
is in R+ (K;), which is different thar?’, andW ; is either in  Algorithm 2 Local L2 Thresholding
Rz (Ki) as well or is empty. In the former cas€; = G, SO Input of peer p;: ¢, L, Xs0, N,
every peer obviously compute’ (K;) = F (G). In the latter Global constants: A random seeds
case, Theorem 3.1 dictates tfate Ry, soF (Ki) = F (G) Data structure for p;: For eachp; € N; X;, | Xi.;], X;.0n
too. Finally, provided that every message sent in the dlyori |X:.4], last_message
carries the information of at least one input vector to a peglutput of peer p;: 0 if HEH < ¢, 1 otherwise
that still does not have it, the number of messages sent batweomputation of R z:
the time the data stops changing and the time in which evargt R, = {Z:]|Z]| <e}
peer has the data of all other peers is bounded)t<yv|2). Let uy,...,u, be pseudo-random unit vectors and let
B H;,={Z:7 u; >e¢}
Rz ={Rin, H1,...,Hy, T}.
Computation of |X; ;| and X; ;:

C. Local L2 Norm Thresholding X KK IX 6 X
% T
Following the description of a generic algorithm, specifig, (i X (_IK:V‘Cz X_Jllel

algorithms can be implemented for various functighsOne

of the most interesting functions (also dealt with in our , |
previous paper [4]) is that of thresholding the L2 norm of X, i K| = 1X4] — w
the average vector, i.e., deciding|j§|| < e. While (A;; ¢ Rr (K:) or Wi, & R (K:) and | Wi.;| # 0)

To produce a specific algorithm from the generic one, thitialization: last_message «— —oo0, COMPULER £
following two steps need to be taken: On receiving a messagex, | X| from p;:
1) A respective coveR r, needs to be found - X, — X, |X,il < |X]
2) A method for findingX; ; and|X; ;| which assures that On change inX; ;, N;, K; or |K;|: call OnChange()
both A; ; andW; ; are in R needs to be formulated OnChange)
In the case of L2 thresholding, the area for whitoutputs For eachp; € N;:
true — the inside of an circle — is convex. This area is denoted- If one of the following conditions occur:
R:,. The area outside thecircle can be divided by randomly— 1. R# (K;) = T and eitherA; ; # K; or |A; ;| # |Ki]
selecting unit vectorsiy, ..., 4, and then drawing the half-— 2. W, ;| =0 and A; ; # K; -
spacesH,; = {i:i-i; > ¢}. Each half-space is convex.— 3. Ai; & Rx (Ki) or Wi ; & R (Ki)
Also, they are entirely outside thecircle, soF is constant on — then
every H;. {Ry,, H,,...,H;, T} is, thus, a respective cover.— — call SendMessage;)
Furthermore, by increasing the area between the halfspaceSendMessag@; ):
and the circle or the tie area can be minimized to any desirédiime () — last_message > L L
degree. —If Rz (K;) =T then the newX; ; and|X; ;| are W, ;
It is left to describe how th&SendMessagemethod com- and|[W; ;|, respectively
putes a message that forcg; and W into the region — Otherwise compute new; ; and|X; ;|
which containsk; if they are not in it. A related algorithm, — last-message « time ()
Majority-Rule [1], suggests sending all of the withheld ko — SendX; ;, |X; ;| to p;
edge in any case. However, experiments with dynamic ddte
hint this method may be unfavorable. If all or most of the Wait L — (time () — last_message) time units and then
knowledge is sent and the data later changes the withh&Rll OnChange()
knowledge becomes the difference between the old and the
new data. This difference tends to be far more noisy than the
original data. Thus, while the algorithm makes certdirn; and
W; ; are brought into the same region /s, it still makes an V. REACTIVE ALGORITHMS

effort to maintain some withheld knowledge. The previous section described an efficient generic local
Although it may be possible to optimize the size|¥¥; ;|  aigorithm, capable of computing any function even when the
we take the simple and effective approach of testing @@ta and system are constantly changing. In this section, we
exponentially decreasing sequence|)df; ;| values, and then |eyerage this powerful tool to create a framework for pradgc
choosing the first such value satisfying the requirements fang maintaining various data mining models. This framework
Ai j andW; ;. When a peep; needs to send a message, it firs§ simpler than the current methodology of inventing a sieci
sets the newX; ; to W Then, it tests a sequencedistributed algorithm for each problem and may be as efficien
of values for|X; ;|. Clearly, | X; ;| = |K;| — | X, translates as its counterparts.




The basic idea of the framework is to employ a simpersist for a given period of time before the convergecast
ple, costly, and possibly inaccuratmnvergecasilgorithm advances. Experimental evidence suggests that settitg
in which a single peer samples data from the network aeden a fraction of the average edge delay greatly reduces the
then computes, based on this “best-effort” sample, a datamber of convergecasts without incurring a significanagel
mining model. Then, this model ibroadcastto the entire in the updating ofz.
network; again, a technique which might be costly. Onceryeve A second detail is the separation of the data used for adertin
peer is informed with the current model, a local algorithm; the input of the L2 thresholding algorithm — from that which
which is an instantiation of the generic algorithm is used used for computing the new average. If the two are the
in order to monitor the quality of the model. If the modekame then the new average may be biased. This is because an
is not sufficiently accurate or the data has changed to thkert, and consequently an advancement in the convergecast
degree that the model no longer describes it, the monitorirggbound to be more frequent when the local data is extreme.
algorithm alerts and triggers another cycle of data catbecit Thus, the initial data, and later every new data, is randomly
is also possible to tune the algorithm by increasing the gampssociated with one of two buffer®;, which is used by the
size if the alerts are frequent and decreasing it when theg Thresholding algorithm, and’;, on whom the average is
are infrequent. Since the monitoring algorithm is everyualcomputed when convergecast advances.
correct, eventual convergence to a sufficiently accuratdano A third detail is the implementation of the convergecast
is very likely. Furthermore, when the data only goes througdrocess. First, every peer tracks changes in the knowlefige o
stationary changes, the monitoring algorithm triggerseal the underlying L2 thresholding algorithm. When it movesiiro
alerts infrequently and hence can be extremely efficientisTh inside thec-circle to outside the-circle the peer takes note of
the overall cost of the framework is low. the time, and sets a timer totime units. When a timer expires
We describe two instantiations of this basic frameworkheaor when a data message is received from one of its neighbors
highlighting a different aspect. First we discuss the peabl p; checks if currently there is an alert and if it was recorded
of computing the mean input vector, to a desired degree ©for more time units ago. If so, it counts the number of its
accuracy. Then, we present an algorithm for computing reeighbors from whom it received a data message. If it redeive
variant of thek-means clusters suitable for dynamic data. data messages from all of its neighbors, the peer moves to the
broadcast phase, computes the average of its own data and
of the received data and sends it to itself. If it has received
data messages from all but one of the neighbors then this
The problem of monitoring the mean of the input vectors hashe neighbor becomes the peer’s parent in the convergecast
direct applications to many data analysis tasks. The disgecttree; the peer computes the average of its own and its other
in this problem is to compute a vectar which is a good neighbors’ data, and sends the average with its cumulative
approximation forG. Formally, we require thallG — 7i|| < ¢ weight to the parent. Then, it moves to the broadcast phése. |
for a desired value of. two or more of its neighbors have not yet sent a data messages
For any given estimat@, monitoring whethe|G — 71| < p, keeps waiting.
e is possible via direct application of the L2 thresholding |astly, the broadcast phase is fairly straightforward.fgve
algorithm from Section IV-C. Every peer; subtractsz from  peer which receives the ne vector, updates its data by
every input vector inX; ;. Then, the peers jointly execute L2subtracting it from every vector iR; and transfers those
Norm Thresholding over the modified data. If the resultingectors to the underlying L2 thresholding algorithm. Then,
average is inside the-circle thenz is a sufficiently accurate it re-initializes the buffers for the data messages and sérel
approximation ofG; otherwise, it is not. new T vector to its other neighbors and changes the status to
The basic idea of the mean monitoring algorithm is tgonvergecast. There could be one situation in which a peer
employ a convergecast-broadcast process in which the cegceives a newr vector even though it is already in the
vergecast part computes the average of the input vectors aa#lvergecast phase. This happens when two neighbor peers
the broadcast part delivers the new average to all the peeysacurrently become roots of the convergecast tree (ifeenw
The trick is that, before a peer sends the data it collecteiti@ip each of them concurrently sends the last convergecast gessa
convergecast tree, it waits for an indication that the aurfies  to the other). To break the tie, a root pggrwhich receives
not a good approximation of the current data. Thus, when tjefrom a neighbomp; while in the convergecast phase ignores
currenty is a good approximation, convergecast is slow antle message if > j it ignores the message. Otherwise i j

only progresses as a result of false alerts. During this,timg treats the message just as it would in the broadcast phase.
the cost of the convergecast process is negligible compared

to that of the L2 thresholding algorithm. When, on the other o

hand, the data does change, all peers alert almost immigdiatg: #-Méans Monitoring

Thus, convergecast progresses very fast, reaches thearabt, \We now turn to a more complex problem, that of computing

initiates the broadcast phase. Hence, a meis delivered to the k-means of distributed data. The classic formulation of

every peer, which is a more updated estimate of the k-means algorithm is a two step recursive process in
The details of the mean monitoring algorithm are given iwhich every data point is first associated with the nearest of

Algorithm 3. One detail is that of an alert mitigation comdta & centroids, and then every centroid is moved to the average

7, selected by the user. The idea here is that an alert shoafdhe points associated with it — until the average is theesam

A. Mean Monitoring



Algorithm 3 Mean Monitoring

Input of peer p;: €, L, X, ;, the set of neighbord/;, an
initial vector7zg, an alert mitigation constant.

Output available to every peerp;: An approximated means

vectory

Data structure of peer p;: Two sets of vectord?;, andT;, a

timestamplast_change, flags:alert, root, andphase, for
eachp; € N;, a vectorv; and a countet;

Initialization:

Setn « Tg, alert «— false, phase < convergecast
Split X; ; evenly betwee?; andT;

Initialize an L2 thresholding algorithm with the inpat L,
{T—-m:T€ R}, N;

Setw;, ¢; to Ty, | T;|, respectively, andy;, c; to 0,0 for all
otherp; € N;

On addition of a new vector to X; ;:

Randomly addr to eitherR; or T;

If = was added tar;, update the input of the L2
thresholding algorithm td7 —  : = € R;}

Otherwise, update; andc;.

On change inF (K;) of the L2 thresholding algorithm:
If ||EH > ¢ andalert = false then

— setlast_change « time()

— setalert < true

— set a timer tor time units

If ||KCi]| < e then

— Setalert < false

On receiving a data message, c from p; € N;:
Setv; «— U, ¢j — ¢

Call Convergecast

On timer expiry or call to Convergecast:

If alert = false return

If time() — last_change < T set timer to

time() + 7 — last_change and return

If for all pr, € N; except for onez;, # 0

- Lets = ijeNi Cjy 8= ijeNi %W

— Sends, s to p;

— Setphase «— Broadcast

If for all pr, € N; ¢, #0

- Lets= ijeNi Cjr 5 = ijeNi i

— Setphase «— Convergecast

— Sendp to all pr, € N;

On receiving 1/ from p; € N;:

If phase = convergecast andi > j then return

Setq «— i/

Replace the input of the L2 thresholding algorithm with
{Z—m:7T€R;}

Setphase < convergecast and set allc; to 0

Sendz to all p,, # p; € N;

Other than that follow the L2 thresholding algorithm

as the centroid. To make the algorithm suitable for a dynamic
data setup, we relax the stopping criteria. In our formatati

a solution is considered admissible when the average ot poin
is within an e-distance of the centroid with whom they are
associated.

Similar to the mean monitoring, tHemeans monitoring al-
gorithm (Algorithm. 4) is performed in a cycle of convergsta
and broadcast. The algorithm, however, is different in some
important respects. First, instead of taking part of jusé on
execution of L2 thresholding, each peer takes part isuch
executions — one per centroid. The input of #& execution
are those points in the local data s€f, for which the ¢th
centroid, ¢z, is the closest. Thus, each execution monitors
whether one of the centroids needs to be updated. If even one
execution discovers that the norm of the respective knoyded

ICfH is greater tham, the peer alerts, and if the alert persists
or 7 time units the peer advances the convergecast process.

Another difference betweek-means monitoring and mean
monitoring is the statistics collected during convergedask-
means monitoring, that statistics is a sample of sigdictated
by the user) from the data. Each peer samples with returns
from the samples it received from its neighbors, and from
its own data, such that the probability of sampling a point is
proportional to a weight. The result of this procedure is tha
every input point stands an equal chance to be included in
the sample that arrives to the root. The root then computes
the k-means on the sample, and sends the new centroids in a
broadcast message.

V1. EXPERIMENTAL VALIDATION

To validate the performance of our algorithms we conducted
experiments on a simulated network of thousands of peers. In
this section we discuss the experimental setup and andigze t
performance of the algorithms.

A. Experimental Setup

Our implementation makes use of the Distributed Data
Mining Toolkit (DDMT)!- a distributed data mining devel-
opment environment from DIADIC research lab at UMBC.
DDMT uses topological information which can be generate
by BRITE?, a universal topology generator from Boston
University. In our simulations we used topologies genefate
according to theBarabasi Albert (BA)model, which is often
considered a reasonable model for the Internet. BA alsoekefin
delays for network edges, which are the basis for our time
measurement On top of the network generated by BRITE,
we overlayed a spanning tree.

The data used in the simulations was generated using a
mixture of Gaussians ilR?. Every time a simulated peer
needed an additional data point, it sampteGaussians and
multiplied the resulting vector with d x d covariance matrix
in which the diagonal elements were all 1.0’'s while the off-
diagonal elements were chosen uniformly between 1.0 and

Lhttp://www.umbc.edu/ddm/wiki/software/DDMT

2http://www.cs.bu.edu/brite/

SWwall time is meaningless when simulating thousands of cderpwon a
single PC.



I
N

=
o
o

% peers reporting ||G||<€
ul
o
Normalized messages
o
N

N : » Distribution 1}
20F i : Distribution 2[:

o
[

o
[y

20 Q % 0.5 1 1.5 2
g N R T 0 0.5 1 15 2 . Time . E
Mo 20 -10 0 10 20 30 Time % 10° x 10
(a) Typical data set (b) Typical changes in the percent of peers with Typical messaging throughout an experi-
|KCi|| < e ment

Fig. 2. A typical experiment is run for 10 equal length epochse epochs have very similar means, and very large variduaelity and overall cost are
measured across the entire experiment — including transitiphases.

2.0. Alternatively, 10% of the points were chosen uniformlthus defined in terms of normalized messages - the portion
at random in the range qf + 30. At controlled intervals, of this maximal rate which the algorithm uses. Thus, 0.1
the means of the Gaussians were changed, thereby creating@malized messages means that nine times out of ten the
epoch change. A typical data in two dimensions can be seeraigorithm manages to avoid sending a message. We report
Figure 2(a). We preferred synthetic data because of the latgpth overall cost, which includes the stationary and ttaorsal
number of factors (twelve, in our analysis) which influerfoe t phases of the experiment (and thus is necessarily highat), a
behavior of an algorithm, and the desire to perform a tightihe monitoring cost, which only refers to stationary pesiod
controlled experiment in order to understand the behavior ®he monitoring cost is the cost paid by the algorithm even
a complex algorithm which operates in an equally as compléxhe data remains stationary; hence, it measures the &aast
environment. effort” of the algorithm. We also separate, where appraeria
The two most important qualities measured in our expefessages pertaining to the computation of the L2 threshgldi
ments are theuality of the result and theost of the algo- algorithm from those used for convergecast and broadcast of
rithm. Quality is defined differently for the L2 thresholgdin Statistics.
algorithm, the mean monitoring algorithm, and theneans  There are many factors which may influence the perfor-
algorithm. mance of the algorithms. First, are those pertaining to the
For the L2 thresholding algorithm, quality is measured idata: the number of dimensios the covariancer, and the
terms of the number of peers correctly computing an alefistance between the means of the Gaussians of the different
i.e. the percentage of peers for wholfiC;|| < ¢ when epochs (the algorithm is oblivious to the actual values ef th
|G|| < e, and the percentage of peers for whdiii;|| > ¢ means), and the length of the epochs Second, there are
when ||G|| > e. We measure the maximal, average anfdctors pertaining to the system: the topology, the numiber o
minimal quality over all the peers (averaged over a numbpeers, and the size of the local data. Last, there are control
of different experiments). Quality is reported in thredeliént arguments of the algorithm: most importantly- the desired
scenarios: overall quality, averaged over the entire émygert; alert threshold, and then aldo — the maximal frequency of
and quality on stationary data, measured separately fiwger messages. In all the experiments that we report in thismgcti
in which the mean of the data is inside theircle (||G|| <¢) one parameter of the system was changed and the others were
and for periods in which the means of the data is outside tkept at their default values. The default values were : numbe
circle (||G]| > ¢). of peers = 1000/X,;| = 800, ¢ = 2, d = 5, L = 500
For the mean monitoring algorithm, quality is the averag@here the average edge delay is about 1100 time units), and
distance betwee@ and the computed mean vecfarWe plot, the Frobenius norm of the covariance of the dgtd|, at
separately, the overall quality (during the entire experith 5.0. We selected the distance between the means so that the
and the quality after the broadcast phase ended. rates of false negatives and false positives are about equal
Lastly, for the k-means algorithm, quality is defined adviore specifically, the means for one of the epochs was +2
the distance between the solution of our algorithm and th@eng each dimension and for the other it was -2 along each

computed by a centralized algorithm, given all the data bf &imension. For each selection of the parameters, we ran the
of the peers. experiment for a long period of simulated time, allowing 10

We have measured the cost of the algorithm accordif§ochs to occur.
to the frequency in which messages are sent by each peeA typical experiment is described in Figure 2(b) and 2(c).
Because of the leaky bucket mechanism which is part of thethe experiment, after every2 10° simulator ticks, the data
algorithm, the rate of messages per average peer is boundsstribution is changed, thereby creating an epoch charme.
by two for every L time units (one to each neighbor, forstart with, every peer is given the same mean as the mean of
an average of two neighbors per peer). The trivial algoriththe Gaussian. Thus a very high percentagel0 %) of the
that floods every change in the data would send messageers states thzﬂﬁH < e. After the aforesaid numbe2 & 10°)
at this rate. The communication cost of our algorithms isf simulator ticks, we change the Gaussian without changing
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Algorithm 4 k-Means Monitoring the mean given to each peer. Thus, for the next epoch, we
Input of peer p;: €, L, X;;, the set of immediate neighborssee that a very low percentage of the peersQ( %) output

N;, an initial guess for the centroids,, a mitigation that ||G|| < e. For the cost of the algorithm in Figure 2(c),
constantr, the sample sizé. we see that messages exchanged during the stationary phase
Output of peer p;: k centroids such that the average of theis low. Many messages are, however, exchanged as soon as
points assigned to every centroid is withirof that centroid. the epoch changes. This is expected since all the peers need
Data structure of peer p;: A partitioning of X; ; into £ sets to communicate in order to get convinced that the distrdouti

X},z- cee X{fi, a set of centroid§’ = {7, ...,c}, for each has indeed changed. The number of messages decreases once
centroidj = 1,...,k, a flagalert;, a times tamp the distribution becomes stable again.

last_change;, a buffer B; and a counteb;, a flagroot and

a flag phase. B. Experiments with Local L2 Thresholding Algorithm
Initialization:

The L2 thresholding algorithm is the simplest one we
SetC «— (. Let ; )
_ - present here. In our experiments, we use the L2 thresholding
X!, =<T€X,,;:¢ =argmin ||T—5||}- Initialize & to establish the scalability of the algorithms with respiect
€ both the number of peers and the dimensionality of the data,
and the dependency of the algorithm on the main parameters
— the norm of the covariance, the size of the local data set,

instances of the L2 thresholding algorithm, such that jitte
instance has input, o, L, 17— : T € Xj, ¢, N;. For all

pj € Nj, Setbj «— 0, for a”j =1,...,k Setalertj — false, the tolerance, and the bucket sizé.

last_change; <+ —oo, andphase «— convergecast

On addition of a new vectorz to X; ;: 100 2

Find thec; closest tor and addz — ¢; to thej*" L2 B 1‘[} H H} IT{ 2005 - tationary period
thresholding instance. a goo4 f b % b ;
On removal of a vectorz from X, ;: g % ~liGli<e §002 t } } i b
Find thec; closest tor and remover — ¢; from the ;" L2 ¢ 8 cllelie g

threShOIdlng_ InStaE:e' . i 8GZOO 500 1000 2000 Ve?fgoo § 200 500 1000 2000 3000
On change in F (ICl) of the j*h instance of the L2 Number of Peers Number of Peers
thresholding algorithm: (a) Quality vs. number of peers (b) Cost vs. number of peers

If HEH > e andalert; = false then set

. . Fig. 3. Scalability of Local L2 algorithm with respect to tmeimber of
last_change; < time(), alert; < true, and set a timer to 9 y 9 P

: ’ peers.
7 time units
If || Ki]| < e then setalert; — false
On receiving B,b from p; € N;: 100 Y
SetB; « B, b; — b and call Convergecast 0 T’Hﬂ’ ]‘HI [ o m -5 ~Overal
On timer expiry or call to Convergecast: g o {» *’ g ~Stationaty period

o = 0.3

If forall ¢ €1,...,k] alerty = false then return 8 3 k
Let t — Ming—1. r {last_messagey : alert; = true} 3; 90 D”g”:z %z'i # # k q ﬂ
Let A be a set ob samples returned b$ample = |looveral § 'G H ﬁ- J&
If time() <t + 7 then set a timer to + 7 — time() and T 2345678910 23456780910
return (a) Quality vs. dimension (b) Cost vs. dimension
If for all p, € N; except for onehy, #£ 0
— Setroot « false, phase «+ Broadcast Fig. 4. Scalability of Local L2 algorithm with respect to théenension of
- Send4, | X, ;| +Y,,—,  bm to p, and return the domain.
If for all pr, € N; by, #0
— Let C’ be the centroids resulting from computing the In Figures 3 and 4, we analyze the scalability of the local L2
k-means clustering oft algorithm. As Figure 3(a) and Figure 3(b) show, the average
— Setroot « true quality and cost of the algorithm converge to a constant as
— SendC’ to self and return the number of peers increase. This typifies local algorithms
On receiving ¢’ from p,; € N; or from self: because the computation is local, the total number of peers d
If phase = convergecast andi > j then return not affect performance. Hence, there could be no deteidorat
SetC «— '’ in quality or cost. Similarly, the number of messages per
Forj=1...k set peer become a constant — typical to local algorithms. Figure

4(a) and Figure 4(b) show the scalability with respect to the

XJ: _EXiiZ_': i T —¢C A . . . .
o v 46 ““g%““”x C”} dimension of the problem. As shown in the figures, quality

ce
Forj =1...|N;| setb; < 0 does not deteriorate when the dimension of the problem is
SendC to all p, # p; € N; increased. Also note that the cost increases approximately
Setphase — Convergecast linearly with the dimension. This independence of the dyali
On call to Sample: can be explained if one thinks of what the algorithm does
Return a random sample frodd; ; with probability in terms of domain linearization. We hypothesis that when

1/ (1 + et V| bm) or from a bufferB; with
probability b, / (|X“-| + et V| bm)
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the mean of the data is outside the circle, most peers tel ,,,lOGT }, F f ra} 8029 ~Overall _
to select the same half-space. If this is true then the pnoble g o % % % % 02 H ° Stationary period
is projected along the vector defining that half-space + i.e§ =015

becomes uni-dimensional. Inside the circle, the problem i5 o *|IGlI<e 501

again uni-dimensional: If thought about in terms of the pola = :I(Ij?lgja&" £0.05

coordinate system (rooted at the center of the circle), then 85,00 800 1600 3200 “ %00 800 1600 3200
only dimension on which the algorithm depends is the radiu: Pl i

The dependency of the cost on the dimension stems from the  (a) Quality vs.|X; ;| (b) Cost vs|X; ;|

linear dependence of the variance of the data on the number of

Gaussians, the variance of whom is constant. This was prO\FéQ[;l 6. Dependency of cost and quality of L2 thresholding &®;|. Quality
Is defined by the percentage of peers correctly computingeah (@eparated

in experiments not included here. for epochs with||G|| less and more thae). Cost is defined as the portion of
In Figures 5, 6, 7 and 8 we explore the dependency of the L leaky buckets intervals that are used. Both overall @ogtcost of just the

algorithm on different parametewskz Frobenius norm of the stationary periods are reported. Overall measuremeniisd@che transitional
. ' 2 period too.

covariance of the data (||o|| . =>,_; ., ijlwn loi, 517,

the size of the local data bufféX; ;|, the alert threshold,

and the size of the leaky buckét As noted earlier, in each

experiment one parameter was varied and the rest were k '[he third pair of figures, Figure 7(a) and Figure 7(b), presen
at their default values the effect of changing: on both the cost and quality of

the algorithm. As can be seen, below a certain point, the
number of false positives grows drastically. The number of

100y 8 0.25

: {,12 if T% %‘f’ 02 :gt"a?{:r:'ary period false negative_s, on the other hanql, remains constant legard
2 % { S0.15 ﬁ of . Whene is about two, the distances of the two means
§ goll ~IGlI<e t g o1 ﬂ of the data (for the two epochs) from the boundary of the
< ZI(I)?IQ;E" go.osﬁ h' circle are approximately the same and hence the rates ef fals
70 s o 2 % : 0 positives and false negatives are approximately the same to
llolle x10° lloll, x 10" As ¢ decreases, it becomes increasingly difficult to judge if the
(a) Quality vs.||o || (b) Cost vs.||o|| ;- mean of the data is inside the smaller circle and increagingl

easier to judge that the mean is outside the circle. Thus, the
Fig. 5. Dependency of cost and quality of L2 thresholding|efi .. Quality -~ hymber of false positives increase. The cost of the algorith
is defined by the percentage of peers correctly computingeah (geparated .
for epochs with||G|| less and more thae). Cost is defined as the portion of decreases linearly as grows from 0.5 to 2.0, and reaches
the leaky buckets intervals that are used. Both overall @odtcost of just the nearly zero fore = 3. Note that even for a fairly low = 0.5,
stat_ionary periods are reported. Overall measurementisdieche transitional  the number of messages per peer per Ieaky bucket period is
period too. around 0.75, which is far less than the theoretical maximum

of 2.
The first pair of figures, Figure 5(a) and Figure 5(b), outline

the dependency of the quality and the cost on the covarian @100 i % % i % ' Eoveral o
of the data § = AE) where A is the covariance matrix and & e gor jp  [CSttonan peri
E is the variance of the gaussians. Matrixis as defined § 3%

in Section VI-A while E' is the column vector representing $ * EHEH: S025 b

the variance of the gaussians and takes the values 5, 10, = % QOverall g i

or 25. For epochs withG|| < ¢, the maximal, the average, 051z 3 05 1 2 °
and the minimal quality in every experiment decrease ligear (a) Quality vs.c (b) Cost vs.c

with the variance (from around9% on average to around
96%). Epochs With||§” > ¢, on the other hand, retainedfid: 7. Dependency of cost and quality of L2 thresholdingcoQuality is

. . . defined by th ¢ f tl ti h(a ted f
very high quality, regardless of the level of variance. Th fined by the percentage of peers correctly computing an(aleparated for

. ) Epochs with||G|| less and more thae). Cost is defined as the portion of the
overall quality also decreases linearly from around 97% tenky buckets intervals that are used. Both overall costes of just the
84% apparently resulting from slower convergence on ev tionary periods are reported. Overall measuremeniigdie¢he transitional
’ . .. riod too.

epoch change. As for the cost of the algorithm, this increase
as the square root dfo || (i.e., linear to the variance), both
for the stationary and overall period. Nevertheless, evith w Figure 8(a) and Figure 8(b) explore the dependency of
the highest variance, the cost stayed far from the theafeti¢the quality and the cost on the size of the leaky budket
maximum of two messages per peer per leaky bucket perionterestingly, the reduction in cost here is far faster thzm

The second pair of figures, Figure 6(a) and Figure 6(keduction in quality, with the optimal point (assuming 1:1
shows that the variance can be controlled by increasing tiedation between cost and quality) somewhere between 100
local data. A/ X; ;| increases, the quality increases, and cosime units and 500 time units. It should be noted that the
decreases, proportional {g| X; ;|. The cause of that is clearly average delay BRITE assigned to an edge is around 1100
the relation of the variance of an i.i.d. sample to the sampiene units. This shows that even a very permissive leaky
size which is inverse of the square root. bucket mechanism is sufficient to greatly limit the number
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of messages. hand, the quality after the data collection is extremelydjoo
and is independent of. With increasingr, the number of

100 ] 7 ]T §0.08 “overal convergecast rounds per epoch decreases (from three to two
§ % m H H’ *» §006 o Stationary period on average) as shown in Figure 9(b). In our analysis, this
o Y. .
5 = % % results from a decrease in the number of false alerts.
[
5 “lejie]|  &o04 t i .
< o [Gll>e g } {+ Sas 045
o Overall £0.02 =0.24 ®Overall : 3 2
70100 250 500 1000 100 250 500 1000 = \—"Aﬂer Data Collection S 4 038
©» 0.16 8 029
. 2 5 .
(a) Quality vs.L (b) Cost vs.L = Q,5 2
Z0.08 &~ 018
Fig. 8. Dependency of cost and quality of L2 thresholdinglorQuality is 0 o g
defined by the percentage of peers correctly computing ah(akparated for 1K2K Epocﬁ'ﬁ_ength(.r) 10K < 1K2KEpocﬁ'fength ™ ok =
epochs WlthHgH less and more thag). Cost is defined as the portion of the
leaky buckets intervals that are used. Both overall costasd of just the (a) Quality vs. epoch length (b) Cost vs. epoch length
stationary periods are reported. Overall measuremenisd@che transitional
period too. Fig. 10. Dependency of cost and quality of mean monitoringhenlength
of epochT'.

We conclude that the L2 thresholding provides a moderate

rate of false positives even for noisy data and an excelknt r . . .
of false negatives regardless of the noise. It requirds kttm- and stationary periods) t@. The average distance between
the estimated mean vector and the actual one decreases as

munication overhead during stationary periods. Furtheemo hi i T is the following:
the algorithm is highly scalable — both with respect to th@e epoch length” increases. The reason Is the following: at
h epoch, several convergecast rounds usually occur. The

number of peers and dimensionality — because performaﬁ@&

is independent of the number of peers and dimension of t er the rm_md is, the less polluted is the data by reTnantS
problem. of the previous epoch — and thus the more accuratg. is

Thus, when the epoch length increases, the proportion eéthe
later @’s, which are highly accurate, increases in the overall
quality leading to a more accurate average. Figure 10(bysho
Having explored the effects of the different parameters af similar trend for the cost incurred. One can see that the
the L2 thresholding algorithm, we now shift our focus on theumber of L2 messages decreaselamcreases. Clearly, the
experiments with the mean monitoring algorithm. We hawaore accuratez is, the less monitoring messages are sent.
explored the three most important parameters that affect thherefore with increasing’, the quality increases and cost
behavior of the mean monitoring algorithm: — the alert decreases in the later rounds and these effects are reflacted
mitigation period, T’ — the length of an epoch, and— the the figures.
alert threshold. Finally, the average distance betwegnand 7z decreases
as e decreases. This is as expected, since with decreasing

Figure 10(a) depicts the relation of the quality (both ollera

C. Experiments with Means-Monitoring

= 3 - .y
0125 % d b2 § the L2 algorithm ensures that these two quantities be bitough
S oy  [MAfterDamColecion) o 0158 Closer to each other and thus the average distance between
I .
00.075././'—'/' S25 by O them decreases. The cost of the algorithm, however, shows
‘o 0.05 S 0o g the reverse trend. This result is intuitive — with incregsin
< 2 .05 : . . .
0.025 g2 £ the algorithm has a larger region in which to bound the global
> .
100 500 1000 1500 2000 < 100 500 1000 1500 20000 = average and thus the problem becomes easier, and hence less
Alert mitigation period (t) Alert mitigation period (1)
, costly, to solve.
(a) Quality vs.7 (b) Cost vs.7
Fig. 9. Dependency of cost and quality of mean monitoring lua alert § 1 %
mitigation periodr. __0.06 .—_././o §35 8
= ° 0.750
1 ] =
Figure 9, 10 and 11 summarize the results of these expe Zoo S After Data Collection 8 2
. . . N
ments. As can be seen, the quality, measured by the dista < g3 025
ad s = g £
of the actual means vect@f from the computed ong is OG5 5 T 2 o5 i 5 30
excellent in all three graphs. Also shown are the cost grag... & £
with separate plots for the L2 messages (on the right axi$) an () Quality vs.e (b) Cost vs.e
the number of convergecast rounds — _eaCh costs two mess%esll. Dependency of cost and quality of mean monitoringthen alert
per peer on average — (on the left axis) per epoch. thresholde.

In Figure 9(a), the average distance betwe&erand 7
decreases as the alert mitigation peried is decreased for On the whole, quality of the mean monitoring algorithm
the entire length of the experiment. This is as expectedgsinoutcome behaves well with respect to all the three parameter
with a smaller 7, the peers can rebuild the model morénfluencing it. The monitoring coste. L2 messages is also
frequently, resulting in more accurate models. On the othlew. Furthermore, on an average, the number of convergecast
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rounds per epoch is around three — which can easily be redug®d three categories: convergecast based or centraliged a

further by using a longer as the default value. rithms, gossip based algorithms, and local algorithms. &om
_ _ - best-effort heuristics [11], [12], [13] were suggested agl.w
D. Experiments withk-Means Monitoring The first category, convergecast based algorithms, is psrha

the simplest. Algorithms such as [14] provide generic sohg
— suitable for the computation of multiple functions. They
are also extremely communication efficient: computing the
average, for instance, only requires one message from each
peer. Some of these algorithms can be extremely synchinize
— every round of computation taking a lot of time. This
becomes very problematic when the data is dynamic and
computation has to be iterated frequently. Other, such as
(a) Average quality vs. sample siz¢b) Average monitoring cost vs. sam- STAR [15] can dynamically tune accuracy and timeliness vs.
ple size communication overhead. The most thorough implementation
Fig. 12. Dependency of quality and cost kfmeans monitoring on the Of this approach is possibly the Astrolabe system [16] which
sample size implement a general purpose infrastructure for distribute
system monitoring.
In this set of experiments our goal is to investigate the The second category, gossip based algorithms, relies on the
effect of the sample size on tihemeans monitoring algorithm. properties of random walks on graphs to provide probaluilist
To do that we compare the results of our algorithm to thosstimates for various statistics of data stored in the graph
of a centralized algorithm that processed the entire data. WWossip based computation was first introduced by Kegipe
compute the distance between each centroid computed by @ahd17], and have, since then, been expanded to general graphs
peer-to-peer algorithm and the closest centroid compuyed tby Boydet al.[18]. The first gossip based algorithms required
the centralized one. Since our algorithm is not only distieldl  that the algorithm be executed from scratch if the data cksing
but also sample-based, we include for comparison the sesiilt order to maintain those guarantees. This problem was late
of centralized algorithm which takes a sample from the entinddressed by Jelasitgt al. [19]. The main benefit of our
data as its input. The most outstanding result, seen in &ig@lgorithm with respect to gossiping is that it is data driven
12(a), is that most of the error of the distributed algorittsm Thus, it is far more efficient than gossiping when the changes
due to sampling and not due to decentralization. The errare stationary.
both average, best case, and worst case, is very similaato th Local algorithms were first discussed by Afek al. [20],
of the centralized sample-based algorithm. This is siganific Linial [21], and Naor and Stockmeyer [22], in the context of
in two ways. First, the decentralized algorithm is obviguslgraph theory. Kutten and Peleg introduced local algoritims
an alternative to centralization; especially considerthg which the input is data which is stored at the graph vertices,
far lower communication cost. Secondly, the error of theather than the graph itself [23]. The first application of
decentralized algorithm can be easily controlled by insirga local algorithms to peer-to-peer data mining is the Mayerit
the sample size. Rule algorithm by Wolff and Schuster [1]. Since then, local
The costs ofk-means monitoring have to be separated t@igorithms were developed for other data mining tasks
those related to monitoring the current centroids and thodecision tree induction [24], multivariate regression [8tlier
related to the collection of the sample. Figure 12(b) pressemletection [3], L2 norm monitoring [4], approximated sum],25
the costs of monitoring a single centroid and the number ahd more. The algorithm for L2 thresholding, and an initial
times data was collected per epoch. These could be muttipligpplication of that algorithm fok-means monitoring were first
by & to bound the total costs (note that messages relatipgesented in a previous publication by the authors of thigepa
to different centroids can be piggybacked on each othel].
The cost of monitoring decreases drastically with incregsi
sample size — resulting from the better accuracy provided by
the larger sample. Also there is a decrease in the number of
convergecast rounds as the sample size increases. Thétdefaln this paper we present a generic algorithm which can
value of the alert mitigation factar in this experimental setup computeany ordinal function of the average data in large
was 500. For any sample size greater than 2000, the num@istributed system. We present a number of interestingi-appl
of convergecast rounds is about two per epoch — in the figations for this generic algorithm. Besides direct contitns
round, it seems, the data is so much polluted by data frdfthe calculation of L2 norm, the mean, akdneans in peer-
the previous epoch that a new round is immediately triggerd@-peer networks, we also suggest a new reactive approach in
As noted earlier, this can be further decreased using arlargéich data mining models are computed by an approximate or
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VIII. CONCLUSIONS ANDOPEN QUESTIONS

value of r. heuristic method and are then efficiently judged by an efficie
local algorithm.
VII. RELATED WORK This work leaves several interesting open questions. The

Algorithms for large distributed systems have been devdirst is the question of describing the “hardness” of locally
oped over the last half decade. These can be roughly classiitemputing a certain functionr — its “locallability”. For
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instance, it is simple to show that majority voting lendglits [18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “ GossipoAigms:
better for local computation than the parity function. Howe Design, Analysis and Applications,” iRroceedings of INFOCOM'05

. . Miami, Florida, 2005, pp. 1653-1664.
there is lack of an Orderly method by which the hardne ] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossifsdxh Aggregation

of these and other functions can be discussed. The second in Large Dynamic Networks, ACM Transactions on Computer Systems
interesting question is the question of robustness of argen vol. 23, no. 3, pp. 219 — 252, 2005.

| | al ithm | loai L . . f 20] Y. Afek, S. Kutten, and M. Yung, “Local Detection for Glal Self
ocal algorithm for general topologies. Last, in view of ou Stabilization,” Theoretical Computer Scienceol. 186, no. 1-2, pp. 199—

generic algorithm it would be interesting to revisit Nacaisd 230, 1997.
Stockmeyer’s question [22] regarding the limitations ofdb [21] N. Linial, “Locality in Distributed Graph Algorithm$,SIAM Journal of
. Computing vol. 21, no. 1, pp. 193-2010, 1992.
computation. [22] M. Naor and L. Stockmeyer, “What can be Computed Lo&illyn
Proceedings of STOC'93993, pp. 184-193.
[23] S. Kutten and D. Peleg, “Fault-Local Distributed Memgli' in Proceed-
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